`
chriszeng87
  • 浏览: 716298 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

最大子矩阵和问题

阅读更多

最大子矩阵问题:
问题描述:(具体见http://acm.pku.edu.cn/JudgeOnline/showproblem?problem_id=1050)
   给定一个n*n(0<n<=100)的矩阵,请找到此矩阵的一个子矩阵,并且此子矩阵的各个元素的和最大,输出这个最大的值。
Example:
 0 -2 -7  0 
 9  2 -6  2 
-4  1 -4  1 
-1  8  0 -2 
其中左上角的子矩阵:
 9 2 
-4 1 
-1 8 
此子矩阵的值为9+2+(-4)+1+(-1)+8=15。
  我们首先想到的方法就是穷举一个矩阵的所有子矩阵,然而一个n*n的矩阵的子矩阵的个数当n比较大时时一个很大的数字 O(n^2*n^2),显然此方法不可行。
  怎么使得问题的复杂度降低呢?对了,相信大家应该知道了,用动态规划。对于此题,怎么使用动态规划呢?

  让我们先来看另外的一个问题(最大子段和问题):
    给定一个长度为n的一维数组a,请找出此数组的一个子数组,使得此子数组的和sum=a[i]+a[i+1]+……+a[j]最大,其中i>=0,i<n,j>=i,j<n,例如
   31 -41 59 26 -53  58 97 -93 -23 84
 子矩阵59+26-53+58+97=187为所求的最大子数组。
第一种方法-直接穷举法:
   maxsofar=0;
   for i = 0 to n
   {
       for  j = i to n 
       {
            sum=0;
            for k=i to j 
                sum+=a[k] 
            if (maxsofar>sum)
               maxsofar=sum;
       }
   }

第二种方法-带记忆的递推法:
   cumarr[0]=a[0]
   for i=1 to n      //首先生成一些部分和
   {
        cumarr[i]=cumarr[i-1]+a[i];       
   }

   maxsofar=0
   for i=0 to n
   {
       for  j=i to n     //下面通过已有的和递推
       {
           sum=cumarr[j]-cumarr[i-1]
           if(sum>maxsofar)
               maxsofar=sum
       }
   }
显然第二种方法比第一种方法有所改进,时间复杂度为O(n*n)。

下面我们来分析一下最大子段和的子结构,令b[j]表示从a[0]~a[j]的最大子段和,b[j]的当前值只有两种情况,(1) 最大子段一直连续到a[j]  (2) 以a[j]为起点的子段,不知有没有读者注意到还有一种情况,那就是最大字段没有包含a[j],如果没有包含a[j]的话,那么在算b[j]之前的时候我们已经算出来了,注意我们只是算到位置为j的地方,所以最大子断在a[j]后面的情况我们可以暂时不考虑。
由此我们得出b[j]的状态转移方程为:b[j]=max{b[j-1]+a[j],a[j]},
所求的最大子断和为max{b[j],0<=j<n}。进一步我们可以将b[]数组用一个变量代替。
得出的算法如下:
    int maxSubArray(int n,int a[])
    {
        int b=0,sum=-10000000;
        for(int i=0;i<n;i++)
        {
             if(b>0) b+=a[i];
             else b=a[i];
             if(b>sum) sum=b;  
        }
        return sum;
    }
这就是第三种方法-动态规划。


  现在回到我们的最初的最大子矩阵的问题,这个问题与上面所提到的最大子断有什么联系呢?
  假设最大子矩阵的结果为从第r行到k行、从第i列到j列的子矩阵,如下所示(ari表示a[r][i],假设数组下标从1开始):
  | a11 …… a1i ……a1j ……a1n |
  | a21 …… a2i ……a2j ……a2n |
  |  .     .     .    .    .     .    .   |
  |  .     .     .    .    .     .    .   |
  | ar1 …… ari ……arj ……arn |
  |  .     .     .    .    .     .    .   |
  |  .     .     .    .    .     .    .   |
  | ak1 …… aki ……akj ……akn |
  |  .     .     .    .    .     .    .   |
  | an1 …… ani ……anj ……ann |

 那么我们将从第r行到第k行的每一行中相同列的加起来,可以得到一个一维数组如下:
 (ar1+……+ak1, ar2+……+ak2, ……,arn+……+akn)
 由此我们可以看出最后所求的就是此一维数组的最大子断和问题,到此我们已经将问题转化为上面的已经解决了的问题了。

此题的详细解答如下(Java描述):

import java.util.Scanner;
public class PKU_1050
{
     private int maxSubArray(int n,int a[])
      {
            int b=0,sum=-10000000;
            for(int i=0;i<n;i++)
            {
                  if(b>0) b+=a[i];
                  else b=a[i];
                  if(b>sum) sum=b;
            }
            return sum;  
      }
      private int maxSubMatrix(int n,int[][] array)
      {
            int i,j,k,max=0,sum=-100000000;
            int b[]=new int[101];
            for(i=0;i<n;i++)
            {
                  for(k=0;k<n;k++)//初始化b[]
                  {
                        b[k]=0;
                  }
                  for(j=i;j<n;j++)//把第i行到第j行相加,对每一次相加求出最大值
                  {
                        for(k=0;k<n;k++)
                        {
                              b[k]+=array[j][k];
                        }
                        max=maxSubArray(k,b);  
                        if(max>sum)
                        {
                                sum=max;
                        }
                  }
            }
            return sum;
      }
      public static void main(String args[])
      {
            PKU_1050 p=new PKU_1050();
            Scanner cin=new Scanner(System.in);
            int n=0;
            int[][] array=new int[101][101];
            while(cin.hasNext())
            {
                       n=cin.nextInt();   
                       for(int i=0;i<n;i++)
                       {
                                  for(int j=0;j<n;j++)
                                  {
                                             array[i][j]=cin.nextInt();
                                  }
                       }
                       System.out.println(p.maxSubMatrix(n,array));
            }
      }
}

 

转自:http://www.cnblogs.com/fll/archive/2008/05/17/1201543.html

 

---------------------------------------------------------------------------------------------

【问题描述】
求一个M*N的矩阵的最大子矩阵和。
比如在如下这个矩阵中:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2   ………………【1】
拥有最大和的子矩阵为:
9 2
-4 1
-1 8
其和为15。
 
【解题思路】
这道题可以看做是一维最大子串和的二维扩展。
还记得一维最大子串和采用了备忘录似的动态规划。
比如:3 -1 2 -4 10 -3 4 7 -6这个数列中,最大的子串和是10 -3 4 7 = 18。
当时采用的是用一个b[i]来记录:扫描到第i个元素时,其最优子串和:
其递归式是:
b[i]=max{a[i],b[i]+a[i]}
 
运用到这道题中,我们需要将二维的压缩成一维,然后进行如上算法,大致步骤如下:
(1)压缩行
将每行自左向右做累加,存入b[i][j]中。于是上述矩阵就变为:
0 -2 -9 -9
9 11 5 7
-4 -3 -7 -6
-1 7 7 5   ………………【2】
 
b[i][j]表示第i行,自第1列累加到第j列的和。
如果想表示第i行,自第j列累加到第k列的和(j<=k),我们就可以用如下表达式:
b[i][k]-b[i][j-1]=第1列累加到第k列的和 - 第1列累加到第j-1列的和
 
这样做的好处就是可以将求第i行的第j列累加到第k列这个过程的算法复杂度从O(n)压缩到O(1)。
 
(2)DP列
得到矩阵【2】之后,按照一维DP的方式,对每列从第1行往第M行做DP。比如矩阵【2】中的第一列:0 9 -4 -1。
按照一维DP之后的b[]数组为:0 9 5 4,最大值为9,这就表明矩阵【1】中子矩阵
0
9
-4
-1
中的最大子矩阵和为9。
 
然后循环DP,共三层循环。
最外层i循环1-N,表明子矩阵是从第i列开始累加的。
第二层j循环i-N,表明子矩阵是从第i列累加到第j列。
第三层k从1到M做一维DP。
 
所以其复杂度为O(n^3)。如果穷举的话,需要确定子矩阵左上角坐标x,y,需要O(n^2);需要确定右下角坐标x,y,需要O(n^2);需要循环计算子矩阵和,O(n^2);一共是O(n^6)。
 
(3)备忘录
我们这种DP的解法是O(n^3)的时间复杂度,但是存储空间耗费不小,存b[][],还要存做列DP之后的每行最优解。所以实际需要三维数组b来存放。但是我们采用一个备忘录变量值sum,在每次DP后记录其值,反复比较保留最大的sum。最后留下的即为最大子矩阵和。

转自:http://blog.sina.com.cn/s/blog_575e6b9d010009fz.html

 

分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics